硕士生导师

郭建华

  • 个人简介

    郭建华,男,汉族,1967年2月出生,中共党员,理学博士,教授,博士生导师,现任qmh球盟会党委副书记,董事长。

    研究兴趣

    主要研究包括:大数据统计建模、网络数据的统计分析、高维数据分析、机器学习与Bayes网络、文本数据挖掘的统计方法、遗传流行病学、生物信息学、观察研究中的因果推断和建模、生物医学统计和科技评价的统计方法研究等。

    主讲课程

    《统计模型》、《多元统计分析》。

    主要获奖荣誉

    第七届“全国优秀科技工作者”入选者,2016

    吉林省教学成果奖二等奖,2014

    教育部长江学者特聘教授,2012

    吉林省第三批高级专家,2011

    国家级教学团队概率论与数理统计专业教学团队,2010

    新世纪百千万人才工程国家级人选,2009

    第九届吉林省青年科技奖,2007

    教育部自然科学奖二等奖,2007

    首届新世纪优秀人才支持计划入选者,2005

    吉林省第八批有突出贡献的中青年专业技术人才,2005

    长春青年五四奖章获得者,2005

    吉林省第一批拔尖创新人才第三层次人选,2005

    获国务院政府特殊津贴,2004

    吉林省杰出青年科学研究计划资助学者,2003

    北京大学优秀博士论文和北京市优秀博士论文,2001

    国家统计局第四届全国统计科学科技进步奖一等奖,1998

    国家教委科技进步奖二等奖,1997

    主要科研项目

    主持包括科技部国家重点研发计划、国家自然科学基金杰出青年基金、国家自然科学基金重点项目、教育部“长江学者和创新团队发展计划”创新团队等在内基金项目20余项,其中含国家自然科学基金项目12项。主要有:

    1. 国家自然科学基金委员会 数学天元基金项目:基于国家急诊CT影像数据库的多病种精准快速联合筛查的数学方法与系统, 2023.01.01-2024.12.31200万元,联合主持人;

    2. 科技部国家重点研发计划变革性技术关键科学问题重点专项2020年度定向项目(2020YFA0714100):面向海量多源遥感数据处理的关键数学问题及其产业应用,2020.12-2025.11472万元,主持人;

    3. 国家自然科学基金重大项目之重点项目子课题:大数据的统计学基础与分析方法--大数据的稳健统计分析,2017.01- 2021.12255万元,主持人;

    4. 国家自然科学基金重点项目:基于结构的网络数据统计分析,2017.1-2021.12236万元,主持人;

    5. 2010年度教育部长江学者和创新团队发展计划创新团队:数据驱动的应用统计方法研究,2011.1-2013.12300万元,主持人;

    6. 国家杰出青年科学基金:应用统计方法研究,2011.1-2014.12140万元,主持人;

    7. 国家自然科学基金重点项目:生物医学中的统计方法研究,2005.1-2008.12100万元,子课题负责人;

    8. 国家教育部(NCET-04-0310)新世纪优秀人才支持计划,2005.1-2007.1250万元,主持人

    主要学术成果

    发表论文100,主要有:

    1. Yuan, C.F., Gao, Z.G., He, X., Huang, W. and Guo*, J.H. Two-way dynamic factor models for high-dimensional matrix-valued time series. Accepted by Journal of the Royal Statistical Society, Serials B, 2023.

    2. Wang, J.Z., Zhang, J.F., Liu, B.H., Zhu*, J. and Guo*, J.H. Fast network community detection with profile-pseudo likelihood methods. Journal of the American Statistical Association, 2023, 118(542): 1359-1372. https://doi.org/10.1080/01621459.2021.1996378

    3. Li, Y.F., Wu, C.J., Li, W.D., Tsung, F. and Guo, J.H. Dynamic modeling and online monitoring of tensor data streams with application to passenger flow surveillance. Accepted by the Annals of Applied Statistics, 2023.

    4. Gongye, L.X., Jon, K. and Guo*, J.H. Variational pansharpening based on high-pass injection fidelity with local dual-scale coefficient estimation. Accepted by Journal of Applied Remote Sensing, 2023.

    5. Fan, J., Guo, J.H. and Zheng, S.R. Estimating number of factors by adjusted eigenvalues thresholding. Journal of the American Statistical Association, 2022, 117(538): 852- 861.

    6. Zhou, C., Wang*, X.F. and Guo*, J.H. Learning mixed latent tree models. Journal of Machine Learning Research, 202021:1-35.

    7. Zheng, S.R., Cheng, G.H., Guo, J.H. and Zhu, H.T. Test for high dimensional correlation matrices. The Annals of Statistics, 2019, 47(5): 2887-2921.

    8. Yuan, C.F., Zhu, W.S., He, X. and Guo*, J.H. A mixture factor model with applications to microarray data. Test, 201928(1):60-76. https://doi.org/10.1007/s11749-018-0585-3

    9. Wang, B., Diao*, H.A., Guo*, J.H., Liu, X.Y. and Wu, Y.H. Adaptive variable selection for extended Nijboer–Zernike aberration retrieval via lasso. Optics Communications, 2017, 385: 78-86.

    10. Guo, J.H., Hu, J.C., Jing, B.Y. and Zhang, Z. Spline-Lasso in high-dimensional linear regression. Journal of the American Statistical Association, 2016, 111(513): 288--297.

    11. Li, S.T., Chen, J.H., Guo*, J.H., Jing, B.Y., Tsang, S.Y. and Xue, H. Likelihood ration test for multi-sample mixture models and its application to genetic imprinting. Journal of the American Statistical Association, 2015, 110(510): 867--877.

    12. Shan, N., Dong, X.G., Xu, P.F. and Guo, J.H. Sharp bounds on survivor average causal effects when the outcome is binary and truncated by death. ACM Transactions On Intelligent Systems and Technology, 2015, 7(2): Article 18, 11pages. DOI: http://dx.doi.org/10.1145/2700498

    13. Xu, P.F., Guo*, J.H. and Tang, M.L. A localized implementation of the iterative proportional scaling procedure for Gaussian graphical models. Journal of Computational and Graphical Statistics, 2015, 24(1): 205--229.

    14. An, B.G., Guo, J.H. and Liu, Y.F. Hypothesis testing for band size detection of high dimensional banded precision matrices. Biometrika, 2014, 101(2): 477-483.

    15. Guan, G.Y., Guo, J.H. and Wang, H.S. Varying naive Bayes models with application to classification of Chinese text documents. Journal of Business & Economic Statistics, 2014, 32(3): 445--456.

    16. Jin, L.N., Zhu, W.S., Yu, Y.Q., Kou, C.G., Meng, X.F., Tao, Y.C. and Guo*, J.H. Nonparametric tests of associations with disease based on U-statistics. Annals of Human Genetics, 2014, 78: 141--153.

    17. Xu, P.F., Guo*, J.H. and Tang, M.L. An improved Hara-Takamura procedure by sharing computations on junction tree in Gaussian graphical models. Statistics and Computing, 2012, 22: 1125–1133. doi: 10.1007/s11222-011-9286-4

    18. Liu, B.H., Guo*, J.H. and Jing, B.Y. A note on minimal d-separation trees for structural learning. Artificial Intelligence, 2010, 174: 442-448.

    19. Tan, J., Huang, H., Huang, W., Li, L., Guo*, J. H., Huang, B.Q. and Lu*, J. The genomic landscapes of histone H3-Lys9 modifications of gene promoter regions and expression profiles in human bone marrow mesenchymal stem cells. Journal of Genetics and Genomics, 2008, 35: 585-593.

    20. Yin, X.L., Ma, W.Q., Tang, M.L.and Guo*, J.H. Testing for homogeneity of gametic disequilibrium across strata, BMC Genetics, 2007, Vol. 8, article 85.

    21. Geng, Z., Guo, J.H. and Fung, T.W.K. Criteria for confounders in epidemiological studies. Journal of the Royal Statistical Society, Serials B., 2002, 64, 3-15.

    22. Guo, J.H. and Geng, Z. Collapsibility of logistic regression coefficients, Journal of the Royal Statistical Society, Serials B, 1995, 57, 263-267.